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A characterization and classification result is established
which applies to Binomial, Negative Binomial or Poisson signals in
additive noise. The result unifies and generalizes three separate

characterization results appearing in the recent literature.

\ I. INTRODUCTION,
The distributions of discrete signals in additive noise have
been characterized via systems of differential equations satisfied

by their probability mass functions in a series of recent papers,

-££2]; {3} and-[4]). These papers have dealt with signal distribu-

tions belonging to various discrete exponential familiesy and each
\——b—-’*‘.n.
characterization result has roughly been in terms of equations of

the form

'a% £(x|e) = c[f(x-1]8") - £(x|0')].

While the main results in each of these works bear a definite re-
semblance, the proofs have differed substantially, and the regularity

required of the signal distribution has varied among the specific

models studied. For example, only the characterizing result for
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Pascal signals in noise [4] require the existence of moments of all
orders, We have sought here to present a single theorem which
identifies the commonality of these earlier results,

’ ~— The present result relies on a new and general parametrization
of a discrete family of distributions which includes all discrete

convolutions of Binomial, Negative Binomial (Pascal) and Poisson

distributions as special cases. The proof of our characterization
1 and classification theorem differs radically from the individual
; | proofs of the characterization results in the papers cited. More~
over, the theorem requires somewhat weaker assumptions than
\ : cummulatively contained in previous results. In particular, no
|

g : ‘ moment conditions are required in the present result. %

: II. TWO THEOREMS.

The following notation is used in the results of this section:
Z for the set of all integers, and 8, {8, and P for the binomial, g

negative binomial and Poisson distributions respectively.

' Theorem 1. Let Z, {X_ " tn€z U {=},n € [0, +=)} be random
i ]
variables on the nonnegative integers. Assume the distribution

of Z is independent of (n,u), and assume moreover that

i Z= Xo’u = xn'o ¥ n.p.
Then the differential equation
(1) -g- l’(x-xln,p.) = p(X=x- lln- ) TR t)
- P(X=x|n-1, - ‘:) (n$0)
A,

N TR NP TN A PP - g™ =~ =




3
is equivalent to
) S A
vhere Z and [Yn,p.} are independent, and
8(n, &) 1f 0<n€Z and p<n
TR na(-n,;{;) 1f 0>nez
P(p) if n=o

Remark: While the case 0 <n € Z and u > n appears to be unclassified
in (3) above, we note that the differential equations in (1) do not
apply for this case since the parameter - % is negative and the

probability functions on the right side of (1) are therefore undefined.

Proof. First we will show that the variables Yn " defined in (3)

satisfy (1). 1f n = ®» we have

-y X
ﬁ- P(Y=x|e,p) = i‘ {e M /x‘}
= (s Pp¥/al) + (e Pxy )

= (&P X (x-1)1) = (" /1)

e P(Yux-1|o,u) = P(Y=x|w,p)

which 1s (1), since pop-0wy - % and @ = w-1,

For 0<né€Z we have
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‘ - n Ex ne n=x
Reqexlow = Z{QO > T}

X
- Q=)

1l qoy N~X n-
- Chwy T Em T L ("

=1 - - x -
AyEzn™ L O @@

x-l[ (n-1) - ( ](n-l)-(x-l)

nex-1

=h 4

Ly @™

:::.) [ (n-1)

(n-l)

e R

= P(Y=x-1|n-1,

which is (1).

For O >n €Z, we have

. atrix~1
2rxexlaw =2 2 {"Thass

-n+p

- ("™l R ()"

- (YL,

x-1 n
@y @

&Ly - per=xla-1,Eh ),

-n+|.|.) }
-2 {™Thed "zt
“Had (s

-x t I
- Ty @

(n-1) - ( (n-1)-x
(n-l) ]

nex-1

T (ML e 02T (-

nex=1




-(n-1)+(x-1) l>[(—)u.-J 1[( )u-(n-l) (n-1)-(x-1)

x -1 (a-1) @D
’ -(n-1)+x-1>[ Edy, o x (1;,—1)u-<n-1)]<n-1)-x
) (n- -(n-1)

- P(Y-x-lln-l,(gil)u) - P(Y-xln-l.('-’il)u).

- ————— e

It is now easy to show that the variables xn " defined by (2)

’

satisfy (1), since

P9
P(X=x|n,p) = kz*, P(Z =k)P(Y = x-k|n,u).
=0

Now assume equation (1) holds. To prove that (2) and (3) hold,

we use the following result:

" Lemms 1. If equation (1) holds, then we have

oK
@ .i; P(x=xn,p) |

Mﬁu z (- 1) )P(X-x-l.ln-k.(!":;!)u)
n 4=0

o ' for y €[0,+%), 0% n€Z Uy (=], x=0,1,2,..., and &k=1,2,3,... .




Remarks. The sum on the right is actually a finite sum, since the
summand is O whenever £ > min{x,k}. This follows from the defi-
nition of (l;) and the assumption that X has support on the non-
negative integers. Also, for n=«o the correct expression is

obtained by letting n » >,

Proof of Lemma 1. The proof is by induction on k. The

case k=1 {8 just equation (1). Now assume (4) holds. Then

ngn-l)...gn-lﬁ-ll E ( 1)“ "(‘)-a- P(X = x-4|n-k, (—)lb)

n

which, by (1) and the chain rule,

- Mool (ackt) { T -pkt k)P(X=x-z-1\n-k-1 RESI

n 4=0

o0
- Eﬁ(-nk 55k = xeafn-e1, @KLy ) 2k

k+1

[}
o R(n-1),. .(n-lﬂ-lzgn-kz{El(_l)k-,e-bl( )P(x-x-zln-k-l (n k=1 nckely

»
+ D (D yp ke xet]neke1, (Bkody )
£=0

- 8nol)oo el D) 2( 1) FD=4 e (xexe gl ne (1), @EELY )

vhich completes the proof of (4).
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Recall that for any real number r, and any k € Z, the binomial

coefficient (;) is defined by (see {1], p. 50

r(r-1)...(r-k+l)
. or if k>0
G =

1) if k <O0.

Lemma 2. If equation (1) holds, and u < |n|, then

x “-,’)!‘
(5) P(X)=x|npu) = = P(z-x-z)(:) n (1-%)“" if O#n€Z
4=0
and
x L
(5') P(x.x‘ﬂ,p) - 2 P(Z -x-‘) %— e p"

4=0

for x=0,1,2,....

Proof. Use Lemma 1 in the Taylor expansion for P(x-xln,p.)

about p=0:

o e
6 - = -
(6) PX x]n,p.) Y0 a“k P(X x‘n’“)lp.o k!

+ i— P(X= xln,p)l“_“m ol

wvhere 0 < p: <. When n=e, the remainder term is equal to

m
(7) { ;8°< ™A DP(X = xetlm )} B

Since the quantity in braces is a polynomial of degree < x in m,

expression (7Y tehds to O as m~w, When 0 <n € Z, the remainder

term is equal to 0O whensever m > n, When 0> n € Z, we have
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\n(n-l)...(n-nﬂ-l)ll m X o
— & Q)

| < [al =0

2~ pexa
(8) rau,,, P(X xln,u)fw; -

o o)t gy O S m
D1l Gap 2@

=0
By Stirling's approximation,
Cmimel)t _tm_l)-n-m-1+(1/2§n-m+l

al mllﬂ'llz e-m

- (-m—1)'“'1(2_41m;_/g)n!+(1/2)enﬂ

1/2 m
= (ot 4 AL, (g 4 oD,

As m ~ ® the product of the last three factors converges to
1. @ ™W/2) 0l 3/2 g for m sufficiently large,

x
(-ntm-1)!/m! is bounded by a polynomial in m. Since o (':) is a
4=0

polynomial in m, the assumption T“T <1 forces the right-hand

n
expression in (8) to tend to 0 as m -~ ®, (This is the only time
we use y < |n].)

For any nonsero n € 2 and any nonnegative u < |n|, we may

now write, by virtue of (4),




o k - k
PX=x|np) = T 2= p®=x|n,w)| _, -
k=0 ap.k w=0 ET

® X k
=Z OGO ra=x-n
k=0 £=0 "

5 P(Z =x-1) (-1) ¢ > A&y
= SX~- - .
£=0 k=0 & £ o

Now,
I LTI < A
Eockxp(_n) E‘(k)(z)(-n)

s ket
- T (op¢He

® ks
- T O™y
k=0 £k -n

n L & net k
= () Eo( @ )

Application of equation (8.7), page 51 of [1], to this latter expression
ylelds (5). Moreover,

' @ X k=L & k
PE=x|mp) = T 2 P@=x-)(-1)"70()) k-
k=0 £=0
x 1 ® -1 k-t k
EO"‘Z x=4) 31 E‘ L
x ® k k+g
= 2 P(Z=x-4) -},- z 5'—1%‘"——
4=0 k=0

x 4
- 2 P(Z = x-y) o o "‘,
4=0 FA]

which 18 (5'). This completes the proof of Lemma 2.
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Equation (5') identifies X " as a sum Y+ Z where Y and Z
»

are independent and Y ~ P(p). Assume next that 0 <n € Z. Then

(5) becomes

X n L n-z
P(X=x|n,p) = ZPE=x-)(® A -H .
4=0

Although this equation was derived without using the assumption
p < n, the right-hand side is not a probability mass function if
p > n, With this restriction, the above equation identifies xn’“
as a sum Y+ Z where Y and Z are independent and Y ~ B(n,%).

Finally, let 0 > n € Z. For a fixed value of yu, consider
first any n such that y < |n|. Then by (5)

X n ‘l n"‘
PX=x|n,p) = TPE=x-)QP() a1 - B
4=0

X -ntg-l, , -n 0 , 4
Eor(z x=0)CT TN () -

Thus xn =Y+ 2Z, where Y and Z are independent and

Y ~ 78 (-n, :n_,“;).

To finish this case, we need to show that xn " has the
ity

indicated form even when y > ln] « This is accomplished by the
following result:

Lemma 3. Assume that equation (1) holds. If X =Y+ Z

]

vhere Y and Z are independent and Y ~ 78 (=-n, -_-“m:), and

e s TRy . WL - . o W e ol A e Wi e e X2 — G e e
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n<-2, then X L, = Y'+ Z where Y' and Z are independent and
9

LI - —_—
¥~ N8 (-(+D), Tl

Proof. By (1) we have
Px=xlmtl,p) = € + [{P@=x-1]n, Epp) - Px=x]n, (2Dw) } oy

D+e-1) = (o) )'(“*'1) (ot

x
. - e -(n+
C+ 2 P(Z =x-4)( 1 =(n+l)+ -(n+1)+p,)

4=0

by hypothesis and the fact that the mass function for Z + Y, where

Y~ N8 (~(ntl), ), obeys equation (1). The value of the

—_—t
=(nt+l)+p
constant C may be found by evaluating that last equation at p = O:

P(Z=x) = C + P(Z=x)
=m> C = 0, This completes the proof of the lemma and the theorem.
An alternative unifying result, containing nonstochastic as
well as stochastic solutions, is as follows:

Theorem 2. Llet {f(-‘n,r,p) ¢ (n,r,p) € T} be a family of
functions on the nonnegative integers, where I = {(n,r,u) :n € Z,

0<r<+e,0<py<+o}, Define £(x|n,r,uy) =0 for x < 0. Assume

that
(9) i- £(x|n,r,p) = -L:i[ £(x-1|n-1,r,u) - f(xln-l,r,u)]

et et AM e s et

|
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for n# 0. If we assume f(xl 0,r,u) and f(xln,r,O) are functions

of x alone, and assume moreover that

E(x) ) £(x|0,r,p) = £(x|n,r,0) ¥ x,r,n,u,

then

X 4 n L n-4
(10) £(x|n,r,p) = ;b:oﬂx-z)( D (;i;) a- ;“n;)

1 if n>0
-1 1f n<O
any function of the form (10) satisfies (9).

for n # 0, where o - { } Of course, (conversely)

Remarks. The function
X =
gxln,z,p) = My (- ™
n

X T
c,l'l

will be a probability mass function on {0,1,2,...]} for a certain

subset of T, When n> 0 and 0 < < n we have
x n=x
s(xlnmu = (21 - B
= mags function of 8(n, %).

When n < 0, we have

entx~l,, =n_ "0 x
sxln,enp) = CUTDGD )

= mass function of 7B (-n, ::'—“) .

PRRpP!
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As n = +o, in both of the above cases, we have
g(x]n, |n| s ) = g(xlto,+¢,p) ﬁ mass function of P(p).
For the special case r = 'nl, equation (9) becomes

9" 5‘; £x|n, |n| , 0 = £(x-1]n-1, |n}, p) - £¢x|n-1, |n] ,p).

Thus, if we enlarge the parameter space to
rdruf{@Ee,+o,u):0<pu < +a,
Theorem 2 has the following

Corollary 1. The family [f(-]n,r,p) : (n,r,u) € I'} satisfies

(9') 1ff the following conditions hold:

(a) f(x]n, \n] » }) 1is not a probability mass function if

n>0 and p > n;

(b) when %(x) i8 the mass function of a r.v. Z on the non-

negative integers, f£(x|n, |n| , u) 1s the mass function of the r.v,

Y ™ + Z, vhere Yn and Z are independent and (3) holds.

The proof of Theorem 2 is obtained from the corresponding
portion of the proof of Theorem 1 by replacing "n" by "onr" in

certain appropriate places,
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Sketch of Proof. Use induction on k to show that

.L f(xln r,u) = M 2 (- 1)“ -4 k)f(x-zln-k ropu).
au (o r) 4=0

Next, show that f(xln,r,u.) is represented by its Taylor series at

» = 0, provided n> 0, or n <0 and < -n (as in Lemma 2):

falnra = T b g TS S S S T
k=0 (o t) £=0

«=Z f(x-:)(,)(-“—) a -2,
24=0 %n

Now remove the restriction p < -n when n < 0 by an argument

similar to the proof of Lemma 3,
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